• English
  • Deutsch
  • Log In
    Password Login
    Research Outputs
    Fundings & Projects
    Researchers
    Institutes
    Statistics
Repository logo
Fraunhofer-Gesellschaft
  1. Home
  2. Fraunhofer-Gesellschaft
  3. Konferenzschrift
  4. Object Segmentation Using Pixel-Wise Adversarial Loss
 
  • Details
  • Full
Options
2019
Conference Paper
Title

Object Segmentation Using Pixel-Wise Adversarial Loss

Abstract
Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.
Author(s)
Durall, Ricard
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Pfreundt, Franz-Josef  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Köthe, Ullrich
Visual Learning Lab Heidelberg
Keuper, Janis  
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
Mainwork
Pattern Recognition  
Conference
German Conference on Pattern Recognition (GCPR) 2019  
DOI
10.1007/978-3-030-33676-9_21
Language
English
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM  
  • Cookie settings
  • Imprint
  • Privacy policy
  • Api
  • Contact
© 2024